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SUMMARY

It is known that perfect noiseless feedback can be used to improve the reliability of communication
systems. We show how to make those gains robust to noise on thefeedback link. We focus on feedback
links that are themselves discrete memoryless channels. Wedemonstrate that Forney’s erasure-decoding
exponent is achievable given any positive-capacity feedback channel. We also demonstrate that as the
desired rate of communication approaches the capacity of the forward channel, the Burnashev upper bound
on the reliability function is achievable givenany positive-capacity noisy feedback channel. Finally, we
demonstrate that our scheme dominates the erasure-decoding exponent at all rates and, for instance, at
zero rate can achieve up to three-quarters of Burnashev’s zero-rate reliability. This implies that in a shared
medium, to maximize the reliability function some degrees of freedom should be allocated to feedback.
Copyright c© 2008 AEI, first published by John Wiley & Sons, Ltd.

1. Introduction

The availability of feedback in a communication system
makes it possible to relax a fixed-block-length constraint
and work instead with variable-length codes. Variable-
length strategies have the distinct advantage of much
better reliability functions, i.e., the trade-off between
error probability and the duration of transmission. The
possibility of improvement may be understood by analogy
with lossless source coding. In lossless source coding more
likely (typical) sequences are assigned codewords whose
description length is roughly equal to the entropy of the
source. Such sequences make up most of the probability
mass. In contrast, less likely sequences are assigned
longer descriptions. While the expected description length
is roughly equal to the description length of a typical
sequence, zero-error is attained by (rarely) using longer
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descriptions. Feedback enables a similarvariable-length
paradigm for channel coding.

As an important first example of the improvement
possible for channel coding, consider Forney’s paper [11]
on erasure and list decoding. Forney gives the destination
the option to declare an “erasure”. When this occurs
a retransmission is requested (via the feedback link),
resulting in a variable-length code. Roughly, an erasure is
declared if one codeword isn’t sufficiently more likely than
all the rest. (Alternately, in [12] exercise 5.14 an erasure is
declared if the observation isn’t jointly typical with a single
codeword. The resulting reliability function is only slightly
lower than Forney’s.) The reliability function attained by
Forney’s scheme is strictly better than the sphere-packing
bound that upper bounds the reliability function of fixed-
block-length codes without feedback [12] and also of fixed-
block-length codes with feedback over output-symmetric
channels [6].†

As is shown by Burnashev in [2], a further improvement
in the reliability function is possible by including the

†See [16] for a more detailed review.
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source‡ in the decision whether to retransmit. At the
end of an initial transmission period the source knows,
via noiseless feedback of channel outputs, whether the
destination’s best guess of the transmitted message
is correct. If it is correct, the source follows up
with a confirmation. Otherwise it sends a denial. In
[2], Burnashev upper-bounds the attainable trade off,
demonstrating that his achievability is tight.

Both Forney and Burnashev assume the feedback link
is noiseless. However, while Forney’s approach requires
only a single bit be fed back noiselessly per data block,
Burnashev requires noiseless output feedback, i.e., a
noiseless feedback rate equal to the log-cardinality of the
output alphabet. If noiseless feedback is claimed to be
useful, it is natural to query whether the improvement
persists if the feedback link is noisy, as would be the
case in any real-world system. The assumption of noiseless
feedback has long been recognized as the Achilles’ heel of
the information-theoretic study of feedback. In 1973 Bob
Lucky stated it dramatically [14]:

Feedback communications was an area of
intense activity in 1968.. . . A number of authors
had shown constructive, even simple, schemes
using noiseless feedback to achieve Shannon-like
behavior. . . The situation in 1973 is dramatically
different.. . . The subject itself seems to be a burned
out case. . . .

In extending the simple noiseless feedback
model to allow for more realistic situations, such
as noisy feedback channels, bandlimited channels,
and peak power constraints, theorists discovered a
certain “brittleness” or sensitivity in their previous
results.

The goal of this paper is to demonstrate that
improvements in reliability due to feedback are not
necessarily “brittle” with respect to noise in the feedback
link. However, to do this, we must take some care to
formulate the problem appropriately. Although we cast
our problem as one of point-to-point communications, we
draw inspiration from networking. In networking a regular
goal is to share a common communication resource among
many users. Often the way to do so efficiently is via
statistical multiplexing. Consider a time-division multiple-
access backhaul network through which each user in some
community occasionally wants to route a large data packet.

‡In this paper we use the terms “source” and “destination” in preference
to the more standard “transmitter” and “receiver”. This is because to
combat the noise in the feedback link the destination will actively decide
what to transmit back to the source. Thus the destination will also have a
transmitter and the source a receiver.

Three important measures of performance are: (a) network
efficiency, (b) latency, (c) error probability.

(a) Efficiency – the overall rate of transmission – is of
paramount importance to the service provider who
owns the backhaul link. Given the expected number
of channel uses allocated to the transmission of each
packet, and the size of each packet, efficiency is
quantified in terms of how close the systems come
to the Shannon capacity of the link.

(b) On the other hand, a network user is more concerned
with latency. A user would like the time between
when the transmission of their packet commences
and when it is accepted by the destination to be as
small as possible.

(c) In addition to low latency, a user also wants
reliability. The service provider must create a
network, and implement a communication protocol,
that achieves suitably small probabilities of error for
all users.

Herein the trade-off between efficiency, latency, and error
probability, is studied in the information-theoretic limit of
large packet payloads. Implicit is the idea that for any user,
the time between packets is significantly longer than the
acceptable average latency on an individual packet.

This is not the only possible context in which
unreliable feedback is interesting. While the above
discussion provides a packet-switched motivation, for
certain applications a circuit-switched perspective is more
appropriate. In both [9, 19], we examine the case of
a point-to-point link dedicated to a single user where
packet payloads are of fixed size. Instead of packet size,
the expected end-to-end delay is allowed to grow. That
setting is appropriate to scenarios where data comes in a
continuous stream of small chunks, each associated with
an individual deadline (as in streaming media playback
or a video conference). Thus, many packets can be “in
flight” before the first one is due. That changes the nature
of the solution quite dramatically. The difference between
[9] and [19] has to do with the nature of the deadlines.
In [9] a “soft” deadline is considered. The destination is
tolerant of occasional detected erasures and is presumed to
be able either to request retransmission or to mask detected
errors. In [19] the deadline is “hard”. If a packet misses
its deadline it is considered to be in error. Each of these
distinctions make a difference in the resulting asymptotic
behavior.

Copyright c© 2008 AEI, first published by John Wiley
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1.1. Illustrative results

In Figure1 we plot the outer hull of reliability functions for
the schemes derived in this paper. As points of comparison
we plot the sphere-packing bound, the Forney exponent,
and the Burnashev bound. The sphere-packing bound is
an upper bound on the fixed-block-length error exponent
(tight at rates close to capacity). The Forney exponent is
a lower bound on the error exponent of decoder-driven
variable-length coding. The Burnashev bound is a tight
upper bound at all rates.

In the figure, the channel under consideration is a binary
symmetric channel (BSC) with crossover probability0.11.
The feedback link is an independent channel with capacity
Cfb = 4C. Any memoryless feedback channel that can
support this rate of communication will suffice. The
particular details of the reliability function of the feedback
channel are not important for the results of this paper. This
is in contrast to the results of [17].

We present three schemes in this paper, the contributions
of which are indicated by the differently shaded regions
in Figure 1. We initially present our “basic” scheme
that contains the crucial ideas needed to address noisy
feedback. Typically, the reliability function of this scheme
dominates at high rates of communication. For instance,
this reliability function always approaches capacity at
the same slope as Burnashev’s bound, regardless of the
capacity of the feedback channel. In the basic scheme, the
source alone determines whether or not a retransmission is
needed.

At lower communication rates, the bottleneck is the time
required to get the source enough information for it to
determine whether or not to retransmit. We immediately
improve on the basic scheme by allowing the destination
the option of making the decision whether to retransmit.
This decision is made by using an erasure decoder at
the destination. The reliability function of this scheme,
labelled ‘basic + erasure’ is always at least as large
as Forney’s, and demonstrates that Forney’s reliability
function is achievable as long as the capacity of the
feedback link is non-zero.

Finally, we develop a hybrid scheme labelled “multiple
hash”. This scheme trades off a longer transmission
duration with the ability to overcome the feedback
bottleneck mentioned in the last paragraph. The source
is again included in the decision whether to retransmit.
In contrast to the erasure option, which dominates when
Cfb is small, this scheme dominates when the average
communication rate is small. When the average rate is
small, but Cfb is too, this scheme reduces to ‘basic +
erasure’.

1.2. Outline and notation

The outline of this paper is as follows. In Section2
we detail relevant background results. In Section3 we
describe the main challenges posed by noisy feedback
and describe our solutions. Given any feedback channel
that is a discrete memoryless channel (DMC) with
positive capacity we develop a scheme whose reliability
function converges to Burnashev’s as the average rate of
communication approaches capacity. This implies that in
a communication medium where degrees of freedom must
be shared between forward and feedback communication,
a reliability function exceeding the sphere packing bound
is attainable when some degrees of freedom are used for
feedback. We detail the protocols and present the basic
analysis thereof in Section4. Detailed derivations are
deferred to the Appendix.

Regarding notation, we use serifed-fonts, e.g.,x to
indicate sample values, and sans-serif, e.g.,x , to indicate
random variables. Sample or random vectors, e.g., of
length-n, are respectively written asxn andxn. An element
and a set to which it belongs are denoted, e.g., asx ∈ X ,
and the cardinality of the setX by |X |. We useZ+ to
denote the positive integers.

2. Preliminaries

Definition 1 A noiseless-feedback variable-length code
for a discrete memoryless channel (DMC) with inputX
and outputY is a pair of sets of maps

E = {En : M×Yn−1 → X}1≤n, (1)

D = {Dn : Yn → {0, 1, 2, . . . , |M|}}1≤n, (2)

whereM is the set of messages and decoding to0 denotes
“erasure”, i.e., transmission continues.

Definition 2 The transmission duration∆, average trans-
mission rateR̄, and reliability functionEvl(R̄) are defined
as follows:

∆ = n s.t.

{

Dn(yn) 6= 0,

Dn′(yn′

) = 0 for all n′ < n.
(3)

R̄ =
log |M|

E [∆]
. (4)

Evl(R̄) = −
log Pr[error]

E [∆]
. (5)

where Pr[error] = maxm∈M Pr[D(y∆) 6= m|m = m]
and the expectation is taken over the channel noise (and
the codebook if a randomized code is used).

Copyright c© 2008 AEI, first published by John Wiley
& Sons, Ltd.
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Figure 1. Diagram of the reliability functions for the threeschemes presented in this paper. In this example the channelis the BSC
with crossover probability 0.11, and the feedbackCfb = 4C.

In [11] Forney proved the following theorem.

Theorem 1 There exists an average ratēR noiseless-
feedback variable-length coding strategy over DMCp(y|x)
satisfyingEvl(R̄) ≥ Eforn(R̄) where

Eforn(R̄) = Esp(R̄) + C(1 − R̄/C), 0 ≤ R̄ ≤ C, (6)

and whereEsp(·) is the sphere-packing bound [12] of the
channel.

In [7] Telatar provides an erasure decoding rule that
leads to a higher reliability function than Forney’s.
However, for totally symmetric channels his result reduces
to Forney’s (cf. (6)). Telatar further demonstrates that his
exponent is tight at zero rate. For a universal erasure
decoder see [5].

In [2] Burnashev provides the following bound on
Evl(R̄).

Theorem 2 For any average rateR̄ noiseless-feedback
variable-length coding strategy over DMCp(y|x),
Evl(R̄) ≤ Eburn(R̄) where

Eburn(R̄) = C1

(

1 −
R̄

C

)

. (7)

The constantC1 is defined by the two “most distinguish-
able” input symbols as

C1 = max
xi,xj

∑

y

p(y|xi) log
p(y|xi)

p(y|xj)
. (8)

andC is the channel capacity.

To connect Theorems1 and 2, one should consider
Forney’s result to be an achievability result for fixed
block-length erasure decodingwithout feedback (shown
to be tight by Telatar at zero rate). On the other hand,
Burnashev’s result provides a tight upper bound on the

Copyright c© 2008 AEI, first published by John Wiley
& Sons, Ltd.
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CODING WITH NOISY FEEDBACK 5

error exponent of fixed block-length erasure decoding
with feedback.§ Effectively, in this paper we use erasure
decisions to trigger retransmissions via a noisy feedback
link. Of course, in certain settings one may not be
interested in retransmissions and the erasure-decoding
story stands on its own.

As mentioned in the introduction, Forney’s scheme
tests the likelihoods of the codewords. If the maximum
likelihood (ML) codeword is not sufficiently more likely
than the rest, the message is retransmitted. The decision
whether to retransmit is made by the destination alone.
In contrast, Burnashev’s approach moves the decision
whether to retransmit to the source. It improves upon the
Forney reliability by attempting to recognize noise events
that cannot be detected at the destination. An example
would be when the channel noise moves the observation
into the typical noise sphere surrounding a non-transmitted
codeword. The source knows the codeword sent and can
therefore detect such errors. The source follows up by
signaling to the destination that a mistaken decoding
decision is pending by transmitting aNAK. Conversely, it
ACK-s correct decisions. Since this confirm/deny message
is binary its detection can be extremely reliable.

In the place of Burnashev’s scheme, we describe
a conceptually simpler strategy due to Yamamoto and
Itoh [22]. This scheme achieves the Burnashev bound
asymptotically in block-lengthN . The strategy also nicely
illustrates the mechanism that improves the reliability
function beyond what is possible without feedback. The
Yamamoto-Itoh strategy (and Burnashev’s also) is a two
phase scheme. In the first phase a message is sent to the
destination at a rate slightly below capacity, achieving a
somewhat small probability of error. For example, in [22]
a length-λN block code is used where0 < λ < 1. Via the
feedback, at timeλN the source knows the destination’s
ML estimate or “tentative decision”. The source follows
up with a confirm/deny (ACK/NAK) signal. This signal
is (1 − λ)N repetitions of thexi∗ or the xj∗ symbol,
respectively (cf. (8)). At the conclusion of the second
phase the destination runs a binary hypothesis test to
determine whether the confirm/deny signal is anACK or a
NAK. If the result is aNAK, the message is retransmitted
(via the noiseless feedback the source is aware of the

§One sees this by recognizing that for fixed block-lengths theBurnashev
bound is an achievable error exponent in an erasures contextby using
a single-shot Yamamoto-Itoh [22] strategy. Conversely, if any better
errors/erasures trade off were possible with feedback, that scheme could
be used to implement a retransmission strategy. The result would be
a variable-length code with a reliability function that would exceed
Burnashev’s bound.

destination’s decision). Otherwise, the destination commits
to its tentative decision and the next message is sent by the
source.

Undetected errors can occur only if a deny signal is mis-
detected as a confirm. To achieve the exponent in (7) one
skews the binary hypothesis test so that the probability of
false alarm (declaringNAK when anACK is transmitted)
is bounded by a small constant while the probability of
missed detection is driven as small as possible. The best
exponent is found via an application of Stein’s Lemma [4].

Retransmissions only result from errors on the forward
channel or false alarms. AsN increases the likelihood of
either event can be made as rare as desired. Therefore the
probability of retransmission can be driven to zero. This
means that the average rate of communication converges
to the rate of communication in a single block.

3. Accommodating noisy feedback

The variable-length feedback schemes discussed in
Section2 all assume noiseless feedback. The focus of this
paper is on noisy feedback. If we consider the Yamamoto-
Itoh scheme from the perspective of noise in the feedback
link three challenges arise:

1. How should the source decide whether toACK or to
NAK a message?

2. How do we keep source and destination synchro-
nized?

3. How can we utilize the forward channel efficiently
while waiting for feedback information?

The first issue arises because noise in the feedback
link prevents the source from knowing exactly what
the destination observed. Therefore, after transmitting its
messages over the forward channel using a block code,
the source does not immediately know whether to follow
up with an ACK or a NAK. We address this issue by
having the destination transmit an identification code
(protected by a second block code) to the source over
the noisy feedback link. This indicates to the source the
destination’s tentative decision and is sent immediately
following the data transmission. After the source decodes
the identification code, it decides whether the destination
correctly decoded the last data transmission. If correct the
source transmits anACKelse it transmits aNAK.

The second issue arises because in practice a code
is almost never intended for one-shot use. Rather, it is
used repeatedly to encode a (possibly infinite) sequence
of messages. For fixed-block-length codes, the decoder

Copyright c© 2008 AEI, first published by John Wiley
& Sons, Ltd.
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6 S. C. DRAPER AND A. SAHAI

can decide which symbol belongs to which message
without looking at the symbol values. No synchronization
issues arise. However, if the block length is variable
the receiver must parse into messages the unending
stream of received symbols. In lossless source-coding, for
example, the requirement that the code be self-punctuating
manifests itself at the single block level through the explicit
requirement of unique-decodability or equivalently that the
code is prefix-free. For channel coding, the counterpart
is that the decoder must be able to decide how to parse
the stream of channel outputs based upon the outputs
themselves. With noiseless feedback, the requirement can
be expressed at the single block level by requiring the
block stopping time to be a causal function of the channel
outputs.

When the feedback is noisy, it seems hopeless to try
to maintain synchronization as an absolute requirement.
Unless either the forward or feedback channels have
positive zero-undetected-error capacity, the only way
absolute synchronization can be achieved is through
fixed-block-length codes. Consequently, we relax the
design constraint of perfect synchronization at the single
(variable-length) block level. Instead, we recognize the
potential loss of synchronization to be a source of decoding
error, and bound its contribution to the error probability.
In addition we introduce a mechanism for reestablishing
synchronization once lost. Without such a mechanism the
source and destination would always eventually fall out of
synch.

To maintain synchronization in the context of
Yamamoto-Itoh with noisy feedback, the source must
determine how each of its confirm/deny transmissions has
been decoded by the destination. If the source makes a
mistake here, it will fall out of synch with the destination.
For example, the source might transmit a new message
while the destination is expecting a retransmission. We
keep source and destination keep in synch by using a very
low-rate anytime code [15, 18] to appraise the source of
the destination’s sequence ofACK/NAK decisions. With
high probability the anytime code keeps the two discussing
the same message. Just as importantly, it recovers from
any out-of-synch events with increasing probability as
time passes.

The third issue arises because while the feedback
information is being transmitted along the reverse link, the
forward link should not lie idle. If it did, the corresponding
degrees of freedom would be wasted. We interleave
messages to maintain an average utilization of the forward
link. These messages could either come from different
‘users’ time-sharing the forward link (as in the motivating

backhaul network example discussed in the introduction),
or could be a succession of messages coming from a single
user.

4. Protocols for noisy feedback

In this section we give details of the protocols for noisy
feedback. In Section4.1 we present our basic protocol
that addresses the challenges detailed in Section3. We
extend the basic protocol in Sections4.2 and 4.3 to
improve, respectively, performance when the feedback
capacity is small and when the communication rate is low.
The derivations of protocol performance are given in the
Appendix. The underlying ideas and resultant reliability
functions are discussed in the main text.

4.1. Basic protocol

The basic strategy operates across a sequence of length-
N time slots. Each time slot is partitioned into three
segments of lengthsγλN , (1 − λ)N , and (1 − γ)λN ,
respectively, where0 ≤ λ, γ ≤ 1 are design parameters.
This partitioning is illustrated in Figure2. The first and
third segments are used to transmit a length-λN rate-Rdata

block code along the forward channel while the middle
segment is used for sending anACK/NAK signal. At the end
of each time slot the destination’s tentative decision is its
ML message estimatêm ∈ {1, 2, . . . , 2λNRdata}.

The reason for the (possibly) non-contiguous transmis-
sion of the block code – in segments one and three – is
that the confirm/deny message should be sent as soon as
possible. This minimizes the user’s transmission duration
and increases the error exponent. Say, for example, that the
feedback channel is far better than the forward channel.
Then, the information required by the source for deciding
whether to retransmit can be available long before the
transmission of the new codeword wraps up. There is no
reason to postpone transmission of the confirm/deny signal,
and hence it should be transmitted mid-time-slot.

An important observation is that the source does not
need to knowm̂ to decide whether to retransmit. It only
needs to know whether the destination’s tentative decision
is correct, i.e., ifm̂ matches the message sent. This is an
identification problem [8, 10, 3]. To address the capacity
limitations of the feedback link we encode the tentative
decision into an identification code. To deal with the noise
on the feedback link the output of the identification code
is encoded using a forward error-correcting block code.
The resulting codeword is transmitted over the feedback
channel in the firstγλN channel uses of the next time slot.

Copyright c© 2008 AEI, first published by John Wiley
& Sons, Ltd.
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previous msg
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ACK/NAK

identification code
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feedback ch
forward ch

(idle)

segment 2new msg or retrans

synchronization

block codeblock code segment 1:

N NN

γλN (1 − γ)λN(1 − λ)N

= N + γλN + (1 − λ)N

Figure 2. Diagram of interleaving data messages and confirm/deny signals on the forward channel and identification and
synchronization messages on the feedback channel. A singledata message is transmitted in each length-N time slot. However, the
block code is divided into two segments. The feedback link lies idle for the middle(1 − λ)N channel uses of each time slot.

For the identification code we use a binning encoder per
Slepian-Wolf [21]. We assume the existence of unlimited
common randomness between source and destination. This
means that from time slot to time slot the binning functions
are statistically independent. Statistical independenceof
the binning functions greatly simplifies the error analysis.¶

The 2λNRdata messages are randomly partitioned into
2γλNRh bins B1 . . .B2γλNRh . The index k of the bin
such thatm̂ ∈ Bk is then encoded and transmitted along
the reverse channel using a length-γλN block code.
The source decodes the feedback message tok̂ . For
compactness, we refer to the message bin index as the
message “hash”.

If m ∈ B
k̂

(i.e., if the transmitted message and the
tentative decision are in the same bin) the source uses the
second segment of the appropriate times slot (see Fig.2) to
transmit the same length-(1−λ)N ACK signal as is used in
Yamamoto-Itoh. Otherwise it transmits theNAK signal. If
the decoded confirm/deny signal is aNAK the destination
expects a retransmission. If it is anACK the destination
finalizes its tentative decision, terminating the reception of
that message. The duration of transmission is calculated
from the time the block code corresponding to the message

¶It is known that identification codes with unlimited common
randomness have infinite identification capacity [13]. This is in contrast
with the original results on identification codes [1] that require encoder
randomization but assume no randomness is shared with the decoder.

first begins transmission to the time the destination detects
anACK for that message.

To maintain synchronization the destination uses an
anytime code in conjunction with a round-robin scheduling
of time slots amongL “virtual users”. (See [17, 10]
for earlier variants of this strategy.) Each data message
is considered to come from a particular user. After the
transmission of a message, the user waits(L − 1)N
channel uses for its next transmission opportunity. In
the meantime, in the final(1 − γ)λN channel uses of
each time slot the destination is transmitting an anytime
code to the source, indicating theACK/NAK decisions the
destination has made to this point. The anytime code takes
as input the sequence of the one-bitACK/NAK decisions for
all users’ messages.

Although not immediately highly reliable, the outcome
of any particular ACK/NAK decision is learned by
the source with increasing reliability over time. If
retransmission opportunities are spaced sufficiently far
apart, i.e., ifLN is large enough, by the time the first
opportunity to retransmit the message arises the source
knows with high reliability whether or not it needs to
retransmit. In AppendixA.1 we show that synchronization
can be maintained with arbitrary reliability and, once lost,
is soon reestablished. The timing of the synchronization
protocol is illustrated in Figure3.

Copyright c© 2008 AEI, first published by John Wiley
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A/NA/N

retransmission delay for user L

A/N A/N A/N A/N

user L user 1 user 2 user L−1 user L user 1

   code

for user L

anytime

ACK/NAK

.............................. .....

N NN

(1 − γ)λN

Figure 3. Transmission rotates in a round-robin fashion amongL users. Each message is assigned a particular user who must wait till
his next time slot to retransmit. By then the bit indicating to the source whether or not the destination received aNAK (and expects a
retransmission) has been in the anytime code for(L − 1)(1 − γ)λN channel uses.

In AppendixA.1 we bound the error probability of this
scheme asPr[error] <

2−(1−λ)C1N + 2 · 2−γλRhN + Pr[not synched]. (9)

The first term results from a missedNAK. The second
term arises from undetected errors resulting from hash
collisions. These come about in two ways. The destination
may make a decoding error, but the hash of the (erroneous)
tentative decision matches the hash of the transmitted
codeword. If this occurs the source would not detect
the error. Alternately, while the hashes may not match
when initially calculated, a false match may occur because
of noise in the feedback link. In such cases the hash
corresponding to the ML decoding of the feedback
message happens to match that of the true message and
the source does not detect the error. The final term is the
probability of encoder and decoder being out of synch. As
is shown in the appendix, the last term can be made as
small as either of the first two resulting in the limiting error
exponent

lim
N→∞

−
1

N
Pr[error] = min{(1 − λ)C1, γλRh}. (10)

In AppendixA.2 we also show the expected transmis-
sion duration is bounded above by

E [∆] < N + γλN + (1 − λ)N +
2ǫFALN

1 − 2ǫFA
(1 + o(1)).

The false alarm probabilityǫFA is the probability
of an ACK being mis-detected as aNAK, while LN

is the retransmission delay. As is discussed in the
appendix, the false-alarm probabilityǫFA can be made to
decrease exponentially inN , leading to an asymptotically
approachable expected delay

lim
N→∞

1

N
E [∆] = 1 + γλ + (1 − λ). (11)

Together (10) and (11) define the limiting error exponent
for the scheme as

lim
N→∞

− logPr[error]
E [∆]

=
min{(1 − λ)C1, γλRh}

1 + γλ + (1 − λ)
. (12)

The exponent is increased by using the largest possible
Rh. We are limited toRh < Cfb else the rate of the
identification code would exceed the capacity of the
feedback link, resulting in frequent retransmissions. Set
Rh = Cfb to maximize the exponent. The reason the
reliability function of the feedback channel doesn’t come
into play is that feedback errors lead to retransmissions
with high probability. Only in the extremely rare case of
a hash collision (cf. (9)) does a feedback error likely lead
to a undetected decoding error.

Of the N channel uses in a time slot a fractionλ
are dedicated to transmitting data giving a “per-slot” rate
λRdata. As is shown in AppendixA.1 the probability
of retransmission is upper bounded by2ǫFA. Since each
transmission is independent the expected data rate

R̄ >
λRdata

1 − 2ǫFA
. (13)
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CODING WITH NOISY FEEDBACK 9

Recall that ǫFA can be made to decrease to zero
exponentially quickly inN . As in Yamamoto-Itoh, the best
reliability function is found by using a data rateRdata just
below capacity. SettingRdata = C and ǫFA = 0 in (13)
to evaluate the limit givesλ = R̄/C and the resulting
reliability function

min{(1 − R̄
C )C1, γCfb

R̄
C }

1 + γ R̄
C + (1 − R̄

C )
where R̄ ∈ [0, C]. (14)

The reliability function is increasing inγ until the the
probability of missed detection of aNAK (the first term
in the numerator) equals the probability of hash collision
(the second), or the maximumγ = 1 is reached. Therefore
choose

γ = min

{

1,

[

C

R̄
− 1

]

C1

Cfb

}

. (15)

We term the “high-rate” region the region such thatγ < 1,
i.e., such that

R̄ >
C

1 +
Cfb

C1

. (16)

In the high-rate region the bound on the reliability function
simplifies to

(

1 − R̄
C

)

C1

1 +
(

1 − R̄
C

)(

1 + C1

Cfb

) . (17)

In the high-rate region the difference between the
Burnashev exponent and that achieved by this strategy
lies in the denominator of (17). As the average rate of
communicationR̄ approaches the capacity of the forward
channelC the denominator approaches unity. Therefore,
the reliability function of this scheme approaches
Burnashev’s as̄R approachesC. The feedback capacity
Cfb only impacts the error exponent through a term that
behaves quadratically in(1 − R̄

C ). One should note that
it is in the high-rate region, whereγ < 1, that splitting
the transmission of a message into the first and third
segments of its time slot becomes important. Without such
an allocation the reliability function would not approach
capacity with the same slope as Burnashev’s bound. This
is a major refinement compared to the earlier scheme
presented in [10].

Figure 1 plots the reliability function of this ‘basic’
scheme for a BSC with crossover probability0.11 and
Cfb = 4C. Note that the reliability function increases asR̄
decreases fromC to about0.27, after which the reliability

starts to decrease. As we discuss next, this decrease is an
artifact of the scheme.

The basic scheme has two deficiencies we address in
subsequent sections. First, when the feedback capacity is
small the Forney exponent is higher than that of the basic
scheme, even though the Forney approach requires only a
single (albeit reliable) bit of feedback. In the next section
we address this by allowing the destination to demand a
retransmission (via erasure decoding) rather than always
leaving that decision to the source. Second, the reliability
function of the basic scheme decreases to zero even as
the rate decreases (i.e., asλ goes to zero) because the
fraction of the time slot in which the identification code is
transmitted (equal toγλ, see Fig.2) is decreasing meaning
that hash collisions are more probable. We remedy this in
Section4.3 by transmitting multiple hashes per message.
This also allows us to gainfully employ the feedback
channel during the periods in which it is idle in the basic
scheme (the segment marked “idle” in Fig.2).

4.2. Adding an erasure option

An immediate refinement to the basic solution that has a
large effect when the feedback capacityCfb is small comes
from allowing the destination an erasure option. At the end
of each block transmission instead of maximum-likelihood
decoding, the destination performs erasure decoding. If
the decision turns out “erasure” the destination expects a
retransmission regardless of the outcome of the source’s
confirm/deny message. Erasure decisions are indicated
to the source via the synchronization messages. For
transmission of a message to end, and therefore for a
decoding error to be made, aNAK must not be detected
and an erasure must not be declared. In AppendixB we
calculate the effect on the error probability and expected
transmission duration. The derivation is only slightly
different from the basic protocol.

The result of that analysis is that an erasure-decoding
error exponentEforn(·) is added to the numerator of (12)

giving limN→∞
− log Pr[error]

E[∆] =

Eforn(Rdata) + min{(1 − λ)C1, γλRh}

1 + γλ + (1 − λ)
. (18)

There areλNRdata bits transmitted per time slot. In the
limit of largeN the retransmission probability goes to zero
so limN→∞ R̄ = λRdata. We substituteλ = R̄/Rdata

into (18). As before we evaluate the function atRh = Cfb
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10 S. C. DRAPER AND A. SAHAI

getting

Eforn(Rdata) + min{(1 − R̄
Rdata

)C1, γ
R̄

Rdata
Cfb}

1 + γ R̄
Rdata

+ (1 − R̄
Rdata

)
(19)

where0 ≤ R̄ ≤ Rdata ≤ C.
One can immediately see the improvement enabled by

this scheme when the feedback rateCfb is small. While
Cfb limits the second term in the numerator, it does not
effect the contribution of Forney’s exponent.

For example, lettinḡR = Rdata (in other wordsλ = 1
so that there is no confirm/deny phase) andγ = 0 gives
a scheme that achieves the Forney erasure-decoding error
exponent withany amount of feedback. The available
feedback is used to run the anytime code that maintains
synchronization. Since the rate of this synchronization
code can be made arbitrarily small,Cfb can also be
arbitrarily small. The scheme is now totally decoder-driven
since the decision of whether or not to retransmit is being
encoded into the synch information (of negligible size).

The curve labelled “basic + erasure” in Figure1
illustrates how the major improvement stemming from the
erasure option comes at low rates. However, the feedback
channel is still idle a fraction(1 − λ) of the time (cf.
Figure2). In the next section we make use of these channel
uses to further improve the exponent at low rateR̄.

4.3. Multiple hashes gives a low-rate improvement

In this section we show how to delay retransmission
decisions so as to exploit the idle period of the feedback
channel. Instead of necessarily sending the confirm/deny
message in the first confirm/deny slot after the completion
of data transmission, we send it at thekth round wherek
is a positive integer. This allows us to send multiple hashes
per message (and multiple messages per hash). Every hash
must match for anACK to be sent. The key engineering
assumption behind this section is that the source has access
to multiple messages to transmit even before the first
message has been accepted at the destination. This means
that the inter-arrival time of messages is shorter than the
acceptable average latency on a single message.‖

To simplify the analysis, first consider the requirement
of the synch messages asN gets large. To this point we
have assumed that the entire third segment of each time slot

‖While this moves in the direction of [9], the difference is that here we
do not assume that the inter-arrival time of messages is asymptotically
insignificant relative to the acceptable latency on a singlemessage.
Instead, the two are comparable to each other and related throughk.

is allocated to synchronization. However, as the analysis
of AppendixA.1 shows, one can accommodate a shorter
third segment (largerγ) by including more users in the
round-robin scheduling depicted in Fig.3. As N and L
grow, the fraction of feedback channel uses allocated to
synchronization can be allowed to shrink till, in the limit
of large N , it is negligible. Therefore, for simplicity of
presentation we assume allN channel uses of each time
slot can be allocated to hash messages.

Under this assumption, each message is hashedk ≥
1 time by length-γλN hashes, andk − 1 times by
length-[(1 − λ) + (1 − γ)λ]N = [1 − γλ]N hashes. The
protocol fork = 3 is diagrammed in Fig.4.

In AppendixC we derive the following asymptotically
approachable error exponent for the scheme:

Eforn(Rdata) + min{C1(1 − λ), Rh(γλ + k − 1)}

k + γλ + (1 − λ)
,

(20)
where k ∈ Z+ and γ ∈ (0, 1]. As in Section 4.2 the
exponent is maximized by choosingRh = Cfb and λ =
R̄/Rdata.

A slightly modified analysis is necessary forγ = 0. If
γ = 0 each block code is not split across the confirm/deny
signal. Referring to Fig.4, whenγ = 0 the transmission
of mi does not commence at timea, but rather timeb.
This means that the transmission durationτ is smaller by
(1 − λ)N , and the error exponent is

Eforn(Rdata) + min{C1(1 − λ), (k − 1)Rh}

k
(21)

wherek ∈ Z+, k ≥ 2. For k = 2 and Rdata = C this is
the result presented in [10]. To evaluate the best exponent,
again setRh = Cfb andλ = R̄/Rdata.

The maximum of (20) and (21) is the final reliability
function of our scheme, given in (22) where 0 ≤ R̄ ≤
Rdata ≤ C. We note that neither the first nor the second
term of (22) dominates in all regimes. For instance consider
a BSC with crossover probability0.1 andCfb = C/4. In
the regimeR̄ ∈ [0.435, 0.48] the second term is larger with
k ∈ [2, 3, 4]. While in the regimēR ∈ [0.48, 0.505] the first
term dominates, and above0.505 the second term is larger
for a short range once again.

The zero-rate exponent is calculable in closed form. Let
both R̄ andRdata go to zero with the ratiōR/Rdata also
going to zero. The exponent becomes

max
k∈Z+

Eforn(0) + min{C1, k Cfb}

k + 1
. (23)
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a b

(1−λ)N(1−λ)N γλNγλN (1−γ)λN (1−γ)λN

mimi mi+1mi+1 mi+2mi+2 mi+3mi+3ACK/NAK
mi−3

ACK/NAK
mi−2

ACK/NAK
mi−1

ACK/NAK
mi

h(m̂i−1, m̂i−2, m̂i−3) h(m̂i−1, m̂i−2) h(m̂i, m̂i−1, m̂i−2) h(m̂i, m̂i−1) h(m̂i+1, m̂i, m̂i−1) h(m̂i+1, m̂i) h(m̂i+2, m̂i+1, m̂i) h(m̂i+2, m̂i+1)

Durationτ = kN + γλN + (1 − λ)N Decision/erasure made on messagemi

Synch transmissions make up a negligible fraction of feedback channel uses for largeN andL

Figure 4. Diagram of interleaving of user data andNAKs on the forward channel and the corresponding identification coding on the
reverse channel.

max
k∈Z+,γ∈[0,1]

max

{

Eforn(Rdata) + min{C1(1 − R̄
Rdata

), Cfb(γ
R̄

Rdata
+ k − 1)}

k + γ R̄
Rdata

+ (1 − R̄
Rdata

)
,

Eforn(Rdata) + min{C1(1 − R̄
Rdata

), kCfb}

k + 1

}

. (22)

In the case where the feedback channel is sufficiently large,
Cfb ≥ C1, we find the maximum attainable exponent of
our scheme to be

1

2
[Eforn(0) + C1] . (24)

As an example, Telatar [7] proves that the zero-rate error
exponent of erasure decoding equals

max
px (·)

∑

x

∑

x′

∑

y

px(x)px (x
′)py|x (y|x

′) log
py|x(y|x

′)

py|x(y|x)
.

(25)
where px(·) is the user-chosen input distribution and
py|x(·|·) is the channel law. For the BSC with cross-over
probability p the zero-rate exponent (25) gives Forney’s
zero-rate exponent and simplifies to

Eforn(0) = 0.5D(p‖1 − p) (26)

which is half Burnashev’s zero-rate exponentC1.
Substituting (26) into (24) says that for a BSC ifCfb ≥ C1

our zero-rate exponent equals0.75C1. The improvement of
the multiple-hashes approach is illustrated in Figure1.

4.4. Illustrative results

Figure 5 plots the results of this paper for a BSC with
crossover probability0.1 and for two different feedback

capacities. We plot our results for the multiple hashing
strategy although, in some cases, depending on theCfb and
the average communication rate, the scheme will reduce to
either the basic scheme or the basic plus erasure.

ForCfb = 5C at low rates the multiple hash technique is
used. At high rate the strategy reduces to the basic scheme.
The break-point between the two occurs at roughlyR̄ =
0.24 where there is a kink in the reliability function. This
is analogous to the transition between the two strategies in
Figure1 which occurs at roughlȳR = 0.27 (recall that in
that plotCfb = 4C).

In contrast, when the feedback channel is more noisy,
Cfb = C, each strategy is used in distinct rate regions.
When R̄ is small (roughlyR̄ < 0.2) the erasure decoder
is used and the reliability function matches Forney’s. At
high rates (roughlȳR > 0.43) the basic scheme dominates.
In between (roughly0.2 < R̄ < 0.43) the multiple hash
technique is used. The two kinks in the curve in
this intermediate region result from the integer effects
discussed in (21).

5. Conclusions

In this paper we have shown that the improvements in
reliability functions resulting from variable-length coding
are not fragile with respect to noisy feedback. We
demonstrate three major performance points. First, the
performance of the Burnashev bound is approachable even
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Figure 5. Exponent comparison for the binary-symmetric channel (BSC) with crossover probability 0.11: Burnashev, Forney, and
sample results from this paper. ForCfb = 5C at low average rate the multiple hashing technique is used while at high rates the
basic technique is used. In contrast, forCfb = C at low rates the erasure decoding option is used, while multiple hashing is used at
intermediate rates, and again the basic scheme at high rates.

with a noisy feedback link as the rate of communication
approaches capacity. Second, the Forney exponent is
attainable even if given a tiny feedback capacity. This
implies that given a two-way channel whose objective
is one-way transmission, the reliability function can be
improved greatly by allocating some degrees of freedom
to feedback. Third, if the feedback link is capable enough,
at lower rates we can outperform Forney, sometimes
significantly.

One key component at all rates is the use of an
anytime code to maintain synchronization between source
and destination. The anytime code jointly encoders the
synchronization information of all “users” that share the
forward channel. At high rates, there are two additional
key innovations. First, we split the data transmission
part of the message into two segments. This allows the
destination to make its decoding decision as soon as

possible. At the same time we interleave messages to
keep the transmission rate high. At lower-rates, we achieve
better performance than classic erasure decoding by
allowing for a soft combination of Forney-style decoder-
driven retransmission and Burnashev-style encoder-driven
retransmission. We further improve performance at low
rates by sending multiple identification codes per data
block. Only if all identification codes match does the
source trust the destination’s tentative decision.

A. Basic Protocol

A.1. Probability of Error

We analyze the error probability by decomposing the
error events into two root causes. The first cause is an
erroneous tentative decision that the system does notNAK.
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CODING WITH NOISY FEEDBACK 13

Pr[error] = Pr[(synched, dest err,NAK not det) ∪ (not synched,NAK not det)] (27)

≤Pr[NAK not det|synched, dest err] + Pr[not synched]

= Pr[NAK not det, src detects|synched, dest err]

+ Pr[NAK not det, src doesn’t detect|synched, dest err] + Pr[not synched]

≤Pr[NAK not det|src detects, synched, dest err]

+ Pr[src doesn’t detect|synched, dest err] + Pr[not synched]

= Pr[NAK not det|src detects, synched, dest err]

+ Pr[src doesn’t detect, no FB err|synched, dest err]

+ Pr[src doesn’t detect, FB err|synched, dest err] + Pr[not synched]

≤Pr[NAK not det|src detects, synched, dest err]

+ Pr[src doesn’t detect|no FB err, synched, dest err]

+ Pr[src doesn’t detect|FB err, synched, dest err] + Pr[not synched] (28)

The second cause is non-synchronization of source and
destination.

In (27)–(28) we use the following abbreviations to
denote the important events. The event ‘synched’ (‘not
synched’) refers to when source and destination are
discussing the same (different) messages; ‘dest err’
indicates the destination’s tentative decision is incorrect;
‘NAK not det’ means in a given time slot the destination
did not detect aNAK (regardless of what was transmitted);
‘src detects’ (‘src doesn’t detect’) indicates that the source
does (not) detect (for whatever reason) an erroneous
decision; ‘FB err’ (‘no FB err’) means that the block code
that encodes the identification information was incorrectly
(correctly) decoded by the source.

We bound (28) as

log Pr[error]

≤ log
{

2−(1−λ)NC1 + 2 × 2−γλNRh + Pr[not synched]
}

× (1 + o(1)). (29)

The first term in (29) is the only term that exists in the
noiseless setting (e.g., in [22]). TheACK (NAK) sequence
is (1 − λ)N repetitions of thexi (xj) symbol determined
by the optimization in (8). The destination uses a skewed
binary hypothesis test. Stein’s Lemma [4] tells us how
to control the trade-off between false-alarm and missed-
detection. We want to minimize the probability of aNAK
being mis-detected as anACK (leading to a decoding
error) while keeping a slowly vanishing boundǫFA > 0
on the false-alarm probability (anACK being mis-detected
as a NAK, which just leads to a retransmission). For

an arbitrarily smallǫFA, we can approach a bound of
2−C1(1−λ)N on the probability of not detecting aNAK as
N gets large. In fact, a slight generalization of Stein’s
Lemma due to Hoeffding (see, e.g., [5, Exercise 1.2.12])
shows thatǫFA can be made to decay exponentially inN
with negligible effect on the decay of the missed-detection
probability as long as the exponent ofǫFA is suitably small.

Half of the second term in (29) is the probability that the
identification code fails. This occurs when the true message
is in the same bin as the incorrect tentative decision, a
“hash collision”. Because the bin index of the true message
and the tentative decision are uniformly and independently
assigned, this probability equals2−γλNRh , the reciprocal
of the number of bins.

The other half of the second term of (29) also results
from a hash collision. However, the cause of this collision
is different. The hash calculated at the destination may, in
fact, not match the hash of the data message. However,
because of an error on the feedback link the hash decoded
by the source does not match the hash transmitted by
the destination. The probability that the correct hash
(unfortunately) matches this incorrectly decoded hash is
also2−γλNRh .

It is worth commenting on this further. AsRh

approaches the capacity of the feedback link, feedback
errors occurmuchmore frequently than hash collisions.
Most of these events lead to retransmissions and not to
undetected errors. As with the asymmetric hypothesis test
in the confirm/deny phase, this is another point in the
protocol where the asymmetry in event probabilities is
central to the protocol’s success.
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14 S. C. DRAPER AND A. SAHAI

In order to bound the third term of (29), as discussed
in Sec. 4 we use an anytime code in conjunction with
a round-robin scheduling of time slots amongL ‘users’.
The rate of the anytime code is 1

(1−γ)λN since each bit
being communicated has(1 − γ)λN feedback channel
uses before the next bit arrives. To determine whether to
retransmit an old message or transmit new data in a given
time slot, the source estimates the destination’s sequence
of ACK/NAK decisions. Typically, if afterL − 1 time slots
the destination’s confirm/deny decision–corresponding to
the decision madeL time slots back–is estimated to be
an ACK (and other prior confirm/deny decision estimates
remain unchanged) the source transmits a new message,
else it retransmits. Very rarely the source must re-jig its
transmission schedule to get back into synch with the
destination. This is discussed further below.

The most recent confirm/deny message relevant to a
transmission/retransmission decision entered the anytime
encoder (L − 1)(1 − γ)λN channel uses before this
decision is made. The second most recent(1 − γ)λN
channel uses before that, and so forth. From [18, 16],
we know that the probability a random anytime code
incorrectly decodes a confirm/deny message madei time
slots ago decreases exponentially with delay. Letξ =
2−(1−γ)λNEany(1/(1−γ)λN). Applying the union bound
reveals that the probability that any relevant confirm/deny
messages are in error is bounded by

∞
∑

i=L−1

ξi = ξL−1 1

1 − ξ
(30)

where the relevantEany is the random-coding error
exponent essentially evaluated at zero-rate since1(1−γ)λN

is so small.
If previous confirm/deny decisions are changed then the

source re-jigs its transmission schedule to get back into
synch with the destination. If the re-jigging extends more
thanL time slots back, there is likely to have been a burst
of incorrect decodings. Such out-of-synch events can be
made as rare as desired by choosingL sufficiently large.

It is important to note that error detection and
synchronization operate on two distinct time scales. The
source needs to detect errors immediately so as to be able
to NAK promptly. This time-scale dominates the expected
transmission duration. In contrast, retransmissions operate
on a much longer time scale. As long as retransmission are
suitably rare, their effect on the expected decoding duration
is negligible.

Combining (30) with (29) gives

Pr[error] ≤ 2−(1−λ)NC1 + 2 · 2−γλNRh + ξL−1 1

1 − ξ
.

(31)
SelectL large enough to balance the last term in (31)

with the first two. This is always possible ifλ > 0 and
γ < 1. Note also that the resultingL is not a function of
N . This means that

lim
N→∞

−
1

N
log Pr[error] = min{(1 − λ)C1, γλRh}.

(32)

A.2. Transmission duration

We now bound the expected transmission delay. Trans-
mission begins when a message first shows up at the
channel input. Transmission ends when (due to whatever
cause) the destination detects anACK for that message. The
time difference between the two events is the transmission
delay.

It suffices to think in terms a single user’s message
stream. Letk be the message number. Sok = 1 is the first
message for this user,k = 2 is the second message, and
so on. It is useful to consider time in terms of time slots
where a single slot is of lengthN + γλN + (1 − λ)N and
the slots occur everyLN channel uses. Letdk be the first
time slot in which the destination is listening for message
k. Because of out-of-synch events this is not necessarily
the same time slot in which the source initially transmits
that message. We usesk to be this time slot, i.e., the first
time slot in which messagek is transmitted by the source.
If, for instance,sk < dk the source leads the destination. If
sk > dk the source lags the destination. Ifsk = dk source
and destination are in synch. Finally, letak be the slot
in which messagek is accepted by the destination. The
natural definition of the transmission delay for messagek
is ∆k = N + γλN + (1 − λ)N + LN(ak − sk).

In the vast majority of cases, the transmission delay as
defined above is positive. However, there are very rare
occasions when, due to temporary loss of synchronization,
the destination accepts a message before the source ever
attempted to transmit it. These events are already figured
into the error calculation of the previous section. But,
to prevent such rare events from skewing the expected
transmission duration, we define the transmission duration
of thekth message to be

∆k = N + γλN + (1 − λ)N + LN max(0, ak − sk).

First observe thatdk+1 = ak + 1. The destination
deterministically increments by one its message count
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CODING WITH NOISY FEEDBACK 15

after each acceptance. Observe also that a message is
accepted whenever anACK is detected. Because the
channels are assumed to be memoryless, and hash
functions and codebooks are re-randomized at every slot,
the differencesdk+1 − dk = ak + 1 − dk are independent
geometric random variables and independent of the
transmission time.

To understand the probability of detecting anACK, it is
easier to calculate:

Pr[NAK det]

=Pr[NAK det, dest no err] + Pr[NAK det, dest err] (33)

≤Pr[NAK det, dest no err, no FB err]

+ Pr[NAK det, dest no err, FB err]

+ Pr[dest err] (34)

≤Pr[NAK det|dest no err, no FB err]

+ Pr[FB err] + Pr[dest err]

≤ǫFA + 2−γλNEr(Rh) + 2−λNEf (Rdata) (35)

≤2 ǫFA. (36)

In (35), Ef (·) and Er(·) are, respectively, the random
coding error exponents of the forward and reverse
channels. For (36) we limit 1 > λ, γ > 0, R < C, and
Rh < Cfb whereC andCfb are the forward and feedback
channel capacities, respectively. Under these conditions,
the last two terms of (35) both go to zero asN is increased.
Therefore, there exists a block length such that for all larger
block lengths (36) holds.

Now, consider an arbitrary messagek. The expected
delay can be bounded as follows, In (37) we use Bayes rule
with two identities. First,Pr[ak = a|dk = d] = Pr[ak −
dk = a − d|dk = d], we definei = a − d and note that the
length of time the destination listens is a geometrically
distributed random variable that is independent ofdk since
it only depends on the behavior of the random encoders and
forward/feedback channelsafter the destination has started
listening for this message.

To go from (37) to (38), we notice thatmax{0, d +
i − s} ≤ i + max{0, d − s}. Let s = d − l wherel is the
number of time slots the source leads the destination. That
is, the number of time slots between the time slot where
the source initially transmits messagek and that time slot
in which the destination starts listening for messagek. To
get rid of themax we increase the sum to alll.

For sk to be l steps out of synch with the destination
there must have been at least|l| errors in the anytime
decoding at times = d − l. Making surel is small with
high probability is analogous to the problem of tracking

unstable processes as described in [15, 20] and is why
the anytime code is used. The first error must therefore
be at least|l| extra bits ago. By reasoning analogous to
(30), for l 6= 0 the probability of such an errorPr[sk = d −
l|dk = d, ak = d + i] ≤ ξ|l|+L−1 1

1−ξ since the analysis
of the random anytime code doesn’t depend on the
particular values of the message bits after the desired ones
corresponding todk = d. So, by the memoryless character
of the feedback channel and the disjoint nature of the
times slots used for the anytime code, the conditioning on
ak = d + i is irrelevant.

The derivation continues from (39).
To get to (40), we use that for|ξ| < 1, the sum

∑∞
l=1 kξk = ξ(1 − ξ)−2 and boundl

i < l for i ≥ 1. This
can be made as close to1 + γλ + (1 − λ) as desired by
choosingǫFA small enough andL large enough. Thus, the
expected delay is effectively the length of a single slot.

B. Basic protocol with an erasure option

The analysis of the basic protocol section needs only a
slight modification to incorporate an erasure option. In the
place of (28) we have (41).

Pr[error] = Pr[NAK not det|synched, undet err] Pr[undet err]

+ Pr[not synched]

≤Pr[undet err]
(

Pr[NAK not det|src detects, synched, undet err]

+ Pr[src doesn’t detect|no FB err, synched, undet err]

+ Pr[src doesn’t detect|FB err, synched, undet err]
)

+ Pr[not synched]. (41)

The event “undet err” now refers to an undetected error that
occurs during erasure-decoding.

The use of an erasure decoding also minimally effects
the transmission duration. Retransmission occurs either if
an erasure is declared or aNAK is detected. We modify (33)
as

Pr[NAK det∪ erasure] <Pr[NAK det] + Pr[erasure]

<3ǫFA, (42)

where as beforeǫFA can be arbitrarily small. The asymp-
totically approachable limit on the expected transmission
duration therefore remains unchanged, i.e., it equals (11).
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E[∆k]

N
=1 + γλ + (1 − λ)

+ L

∞
∑

d=1

Pr[dk = d]

∞
∑

a=d

∞
∑

s=1

max{0, a− s}Pr[ak = a, sk = s|dk = d]

=1 + γλ + (1 − λ)

+ L

∞
∑

d=1

Pr[dk = d]

∞
∑

i=0

∞
∑

s=1

max{0, d + i − s}Pr[ak − dk = i] Pr[sk = s|dk = d, ak = d + i] (37)

≤1 + γλ + (1 − λ)

+ L

∞
∑

d=1

Pr[dk = d]

∞
∑

i=0

Pr[ak − dk = i]

∞
∑

s=1

(i + max{0, d − s}) Pr[sk = s|dk = d, ak = d + i] (38)

≤1 + γλ + (1 − λ)

+ L

∞
∑

d=1

Pr[dk = d]

∞
∑

i=0

Pr[ak − dk = i]

∞
∑

l=−∞

(i + |l|) Pr[sk = d − l|dk = d, ak = d + i]. (39)

E[∆k]

N
≤1 + γλ + (1 − λ)

+ L

∞
∑

d=1

Pr[dk = d]

(

2 Pr[ak − dk = 0]

∞
∑

l=1

l
ξl+L−1

1 − ξ
+

∞
∑

i=1

Pr[ak − dk = i]i

(

1 + 2

∞
∑

l=1

l

i

ξl+L−1

1 − ξ

))

<1 + γλ + (1 − λ)

+ L

∞
∑

d=1

Pr[dk = d]

(

2ξL(1 − ξ)−3 +

∞
∑

i=1

Pr[ak − dk = i]i
(

1 + 2ξL(1 − ξ)−3
)

)

≤1 + γλ + (1 − λ) + L

(

2ξL(1 − ξ)−3 +
(

1 + 2ξL(1 − ξ)−3
) 2ǫFA

1 − 2ǫFA

)

. (40)

C. Multiple hashes

In adapting the error calculation of (41) to multi-block
hashing, only the second and third terms inside the
parentheses are changed. Respectively, they are replaced
by (43) and (44).

Pr[src doesn’t detect|no FB err, synched, undet err]

= 2−kNγλRh2−(k−1)N(1−γλ)Rh

= 2−γλNRh2−NRh(k−1). (43)

Pr[src doesn’t detect| ≥ 1 FB err, synched, undet err]

= (2k − 1)2−γλNRh2−NRh(k−1). (44)

The event≥ 1 FB err is that at least one block-encoded
identification code is decoded in error. The constant(2k −
1) in (44) follows from the union bound because there
are(2k − 1) hashes transmitted over the feedback link per
message. Any of these can be in error. The probability of
a missedNAK remains the same since each message is still
allocated its own confirm/deny signal. Synchronization can
be dealt with as before.

The probability of retransmission remains almost the
same. Equation (42) becomes

Pr[NAK det∪ erasure] <(2k + 1)ǫFA, (45)

because now there are2k − 1 distinct hashes fed back
from destination to source in addition to the probability
of false alarm. The limiting normalized expected duration

Copyright c© 2008 AEI, first published by John Wiley
& Sons, Ltd.

Euro. Trans. Telecomms.2008;19: 355–370
DOI: 10.1002/ett



CODING WITH NOISY FEEDBACK 17

becomeslimN→∞
1
N E [∆] = 2 − λ(1 − γ) + (k − 1) =

k + γλ + (1 − λ) resulting in the error exponent

Eforn(Rdata) + min{C1(1 − λ), Rh(γλ + k − 1)}

k + γλ + (1 − λ)
.

(46)
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